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Dispersion properties of the out-of-plane transverse wave in a two-dimensional Coulomb crystal
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The formation of a two-dimensiondPD) Coulomb crystal in a typical experimental environment was
simulated with a computer code calledx_TREe The dispersion properties of a novel dust lattice wave
(DLW) mode, theout-of-planetransverse wave, were obtained. The dispersion relation was determined to be
an opticlike inverse dispersion when wave numkeis lower than a critical valud,;;co, and a positive
dispersion wherk>K_icoi- The negative group velocity of the wave oK iicar depends on the value
(with k=al/\p, wherea is the interparticle spacing andy is the Debye lengthand the positive group
velocity for k>Kkiica depends on the propagation direction. The valukQf., depends on both and
propagation direction, but changes very little for all propagation directions and the rargevafstigated. An
analytical method has also been used to derive the dispersion relations assuming a hexagonal 2D lattice and
Yukawa interparticle potential. These dispersion relations compare favorably with the simulation results. The
dispersion relation for a 1D string was also obtainedsgéx_TREE simulation and shown to agree with the
analytical result given by Vladimirof/Physica A315 222 (2002]. Comparison shows that thmit-of-plane
transverse DLW in a 2D lattice whea<Kicat has a negative group velocity much larger than that of the 1D
string, given the same patrticle parameters and operating environment.ldggaipfor 1D string and 2D lattice
are in the same range.
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[. INTRODUCTION transverse wave in the 2D Coulomb crystal are not yet un-
derstood.

The two-dimensional2D) Coulomb crystal produced in a In this research, a numerical code callBolx_TREE was
typical laboratory compleXdusty plasma environment is Used to simulate the formation of a 2D Coulomb crystal un-
formed when dust particles are levitated in the sheath regiofler the balance of gravity and a linear electrostatic field. The
of a rf discharge plasmid—3]. Dust particles immersed in a dispersion relation of theut-of-planeDLW was obtained by
plasma are usually negatively charged due to electron cu@nalyzing the vertlcal motion of the pgrtlclgs |n_th|s Coulom_b
rents. Once charged, these particles are then levitated in @yStal. DLWs with various propagation directions and vari-
horizontal plane in the sheath region of the lower electrod@US shielding parameters (with «=a/\p, wherea is the
due to a balance between gravity and the electrostatic ford@terparticle spacing andp is the Debye lengthare dis-
from the lower electrode. This system of particles is usuallycusseOI

constrained on the horizontal direction by an inwardly di- An analytical method |s_also ?‘mp'oye‘? to derlve_dm-
N . ._of-planetransverse DLW dispersion relation assuming a 2D
rected electric field force. The negative charge on a patrticl

is shielded by the ambient plasma resulting in the par,[icle%exagonal Coulomb crystal formed under an external linear

: . . . Blectrostatic force, gravity, and the interparticle Yukawa
interacting with each other through a repulsive Yukawa PO%orce. The simulation results are shown to agree with the
tential defined by (r)=Q exp(—r/\p)l4meor, wherer is

. ; X analytical results.
the distance between any two particles arglis the dust Finally, a simulation was run for a 1D string of particles.

Debye length. The dust particles constrained in the plangne results were then compared with both the 2D lattice

form a hexagonal lattice due to this potential and make a 2Resylts and the Vladimirov analytical results as giveflia).
Coulomb crystal.

Two types of dust lattice wave®LW) in 2D Coulomb
crystals have been studied both theoreticfyd] and ex- Il. NUMERICAL METHOD

perimentally[4-8]. Both of these wave modéthe longitu- TheBox_TREE code is a Barnes-Hut tree code first written
dinal and then-planetransversginvolve motion of the par-  py Richardsor11] for planetary ring and disk studies. It was
ticle in the horizontal plang9]. However, it has recently |ater modified by Matthews and Hydd2,13 to include
been showri10] that the dust particles can also move verti- electrostatic interactions and then by Vasut and Hyidg to
cally out of the plane. This motion out of the plane leads tosimulate the formation of Coulomb crystaBox_TREE has
another low-frequency transverse dust lattice wave modeyroven to be an effective tool for modeling real time systems
which can be responsible for phase transitions in the systencomposed of large numbers of particles with specific inter-
An optic-mode-like inverse dispersion has been suggesteparticle interactions, especially complé&kusty) plasma sys-
for the vertical wave motion in a horizontal chdit0], how-  tems. Recentlysox_TREE has been used by Qiao and Hyde
ever the detailed dispersion properties of thig-of-plane to investigate the dispersion properties of longitudinal and

in-planetransverse DLW in 2D plasma crystals with the re-

sults agreeing well with previous experimental and theoreti-
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The BOX_TREE code models such a system by first divid- (b)
ing the 3D box containing it into self-similar nested sub-
boxes, where the box size is much greater than the radial
mean excursions of the constituent particles. A tree code is
incorporated into thesox_TREE routine to allow it to deal
with interparticle interactions. Since most such interactions
can be determined by examining the multipole expansion of
collections of particles in the sub-boxes, the code scales as
NlogN instead ofN?, resulting in greater CPU time effi-
ciency. Different boundary conditions can be chosen with
periodic boundary conditions, for example, being met using
26 ghost boxe§14]. Data files showing each particle’s posi-
tion and velocity are output for analysis after a user-defined
time interval. The origin of the coordinate system is chosen
to be at the center of the box.

In this work, the dust particles in the sheath region of the
complex plasma are modeled as particles with a constant
charge. The interparticle interactions considered include both

o . . . 0 5 10 0 5
gravitational and electrostatic forces. The interparticle elec- k (1 /mm) k (1/mm)
trostatic potential is assumed to be a 3D screened Coulomb
repulsion or Yukawa potential with a user-specified Debye FIG. 1. The velocity matrix inw-k space obtained from the
length. External forces considered include gravity and theyumerical simulation foa N=590 (x=1.18) and(b) N=400
electrostatic force. The electric field in the sheath regionx=1.62). The bright areas show the dispersion relations of the
causing this electrostatic force has proven to depend linearlyut-of-planetransverse DLW. The propagation direction is perpen-
on particle heightz [17,18. Thus, the linear electrostatic dicular to the prime translation vector.
field causing the electrostatic force is modeled as

gram|[14]. The interparticle spacing is obtained from the
pair correlation function ana@=a/\p is then calculated.
Multiple 2D hexagonal Coulomb crystals with variogs
), (D values were formed by varying the particle number while
keeping the box size and Debye length constant. In this re-
search, the box is 515X 15 mn?, the Debye length\
whered is the height of the box and the linear coefficient =570 um, and the particle numbed was varied between
k=8.3x10° kg/s. The neutral gas drag is included with a 300 and 590.
user-specified Epstein drag coefficigd®]. Other external When N>570, the vertical velocities of the thermal
forces, including ion drag and the thermophoretic force ardspontaneoysmotion of the particles in the Coulomb crystal
neglected since they have been shown to be several ordersarfe greater than 13° m/s, which is large enough that the
magnitude less than either the gravitational or the electrodispersion relation of the DLW’s can be obtained from an
static force for the particle size examingti7,20. For this  analysis of this spontaneous motion. The motion of the par-
research, the particle radius=6.5um, the particle density ticles within the lattice is tracked for 10 s by choosing the
p=1.51gm/cm, the particle chargey=2400@®, and the data output time interval to be 0.01 s and collecting 1000
Epstein drag coefficien8=2.22 s 1. The boundary condi- data files. Depending on the equilibrium particle positions,
tions in theX Y directions are considered to be periodic sinceParticles are divided into bins with their velocity averaged

the box employed has a size much smaller than the size §IVer €ach bin, yielding velocity data, which are dependent

the 2D plasma crystal in a typical experimental environmentPo" position. Combining data files, a velocity matrix de-

The boundary condition on tH& direction is assumed to be PEnding on timet and positionx can then be obtained. A

a closed boundary condition with particles hitting the top ordOUb.Ie Fourier tr_ansformaﬂo_n of this matrix as given in Eq.

bottom boundaries of the box reflected under an elastic col(-z) yields a matrix representing the particle velocitykit

lision Space. The d_|sper3|on relation can _then be _o_bserved in a
The crystallization of the complexlusty) plasma is simu- ?er?epnfli :tr;\j/v Eslirr:(g- agi;glai%?e\:]v;teé:eigpalr(g():]le velocities are dif-

lated via the formation of an ordered crystal from a random ' '

distribution of particles placed in the box subject to the con- T(L .

dition that the system’s center of mass should be located at Vk,w:(zm-)fo fo v(x,)Xexfi(wt—kx)Jdxdt (2)

the center of the box. The crystal forms approximately 50 s

after the start of the simulation, by which time all the par-whereT is the time interval under estimation ahdis the

ticles have been levitated and formed a horizontal 2D systeriength of the box.

with an equilibrium positiorge;=2.16 mm. The state of the This numerical method can be employed to obtain disper-

system was determined to be in a crystalline fosolid) sion relations for all wave modd45,16 and any propaga-

using the pair correlation function and the lattice was foundion direction. To obtain the dispersion relation for a wave

to be triangulathexagonal using the resulting Voronoi dia- with a specified propagation direction, the direction of the

d
E(z)=k<§—z
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FIG. 3. The dispersion relation for thmut-of-planetransverse
DLW for «=1.18 and various propagation directiorsis defined
as the angle between the propagation direction and the prime trans-
lation vector.

12

gravitational and linear electrostatic forces, the dispersion
relation for theout-of-planetransverse DLW can be derived
from the equation of motion

d2el delt . .
| mﬁr“‘mﬂwz—qvﬂﬁ”—ﬂf”- (€

In Eq. (3), &' represents the vertical deviation from the
1 equilibrium position &} ,y}}) of the particle denoted bj, |
in the lattice (z'o'=0 because all particles are in the same
plang, m is the particle masg] is the particle charges is
] the Epstein drag coefficient, anpdis the linear coefficient of
the external electrostatic field:!' is the electrostatic poten-
tial at positionj,l and is given by the sum of the Yukawa
3 4 5 & 7 ! potentials caused by each individual particle in the lattice
k (1/mm) except for the one located at positipi.
Thus, the first term on the right-hand side of E8). can
FIG. 2. The numericaldoty and analytica(solid line) disper-  be written as

sion relation of theout-of-planetransverse DLW foria) N=590
x=1.18) and(b) N=400 (x=1.62). In both cases, the propaga- . .
Eion direc)tion ié |)oerpendicfjlar to tk?e prime translation v:ctopr. ’ —qV;¢ g :m%j Iglrrlm f“ —&mn), 4

30 ;
0

bins is chosen to be perpendicular to the propagation direc- . ) )
i i i i i i whereg!! is the spring constant between the dust particles
tion. To obtain the dispersion relation of a given wave mode! Omn | pring _ p
the corresponding velocity components are chosen. In thipcated atjl and mn. A Taylor expansion of the Yukawa
research, th&€ components of the velocities were chosen topotential considering only small deviations in thealirection
study theout-of-planetransverse wave mode, which involves yields
the vertical motion of the particles.

For N<570, the vertical velocities of the therm@@pon- i q° r

. . Jl = — ex —_—
taneougy motion of the particles are on the order of mn Amegrs \p
106 m/s and thus too small to be used to obtain the disper-
sion relation. For these si'guations, an excitation pulse Wa§herer is the distance betweerx{{,y{)') and ®T",ymm.
added to the code as a time-dependent external potentigt, ; ; ;
; : ; mploying the trial solution

Once data were collected, the dispersion relations were then

obtained in the same manner as befidfe. 1(b)]. ¢l =& exr[i(kx{)' — )] 6)

r
1+ E), (5)

I1. ANALYTICAL METHOD . . S
in Eq. (3) (when only propagation along the direction is

Assuming a hexagonal Coulomb crystal with Yukawa in-considerey] the dispersion relation as given in ET) can
terparticle potential and grain levitation via the balancedeasily be derived,
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FIG. 5. The numericaldoty and analyticaksolid line) disper-
sion relation of the vertical DLW for a 1D string witk=1 (a
=0.57 mm).

whenN>570 while forN<<570 the lattice must be intention-
ally excited. ForN>590, the particles no longer remain in
the same plane and form a bilayer system. Discussion on this
topic will be addressed in a subsequent article.

Figure 1 shows the dispersion relations for tet-of-
plane transverse DLW obtained fdi=590 (x=1.18) and
N=400 (x=1.62). As can be seen, they are inverse optic-
like dispersions, corresponding to a negative group velocity
when k is lower than a critical valué;ica (long wave-
length. As k passegiicai: @ begins to increase with in-
creasingk. Choosing data points with values above a speci-
fied level in Fig. 1/15,16 and superimposing the analytical
dispersion relation as expressed in E4, a solid fit can be

10
0

2 4 8 10 12 seen in Fig. 2 between the numerical and analytical results

8
k (1/mmy} for both « values. Thew at k=0 mm ! is the angular fre-

FIG. 4. The numericaldots and analyticalsolid line) disper- ~ duency of the single-particle oscillation in the sheath region
sion relation of theout-of-planetransverse DLW fox=1.18 and @o- The negative group velocity of the wave fde
propagation directioiia) parallel andb) perpendicular to the prime  <Kgriicar,» Which is equal to the slope of the inverse disper-
translation vector. sion, depends or dramatically. For example, the group ve-

locity v g for K<Kgiticas €quals—7.135 mm/s forc=1.18 and
—3.624 mm/s fork=1.62.

(7) Figure 3 shows the analytical results of the dispersion
relation for this wave mode witlk=1.18 and for represen-
tative propagation directions. In Fig. 4, a comparison be-

Again, as in Eq(4), the summations in Eq7) are carried  tween this analytical dispersion and the simulation results for

00 mn
2 . zlu’q_ gmn . kXO
W' +ifo=—"-2 > - sire| ——|.

m.n#j,l 2

out over all particles in the lattice except partiglé. two specified propagation directions, perpendicular and par-
allel to the prime translation vector, are given. Again they
IV. RESULTS AND DISCUSSION agree with each other for both directions. As can be seen, the

negative group velocity folk<<Kiica iS independent of

Upon examination, the vertical velocity of the particles propagation direction. However, the positive group velocity
was found to be sensitive to the particle numi@erx value  for k>kica IS Sensitive to the propagation direction. For
whenN is around 580 corresponding to & around 1.17h  this case, it equals 5.162 mm/s for a propagation direction
As N increases from 570 to 590, the average vertical velocityperpendicular to the prime translation vector and 1.714 mm/s
of the particles increases dramatically from the order of magfor a propagation direction parallel to the prime translation
nitude of 10 *® m/s to 10 ® m/s. For anyN<570, the aver- vector.
age vertical velocity is on the order of magnitude of It can also be seen from Figs. 2—4 that altholghica
10 ® m/s. As mentioned before, this is why the dispersiondepends on botlx and 6 (with @ defined as the angle be-
relations can be obtained from the particle’s thermal motiortween the propagation direction and the prime translation
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vectop, it changes very little (4.5 mmt<kgica  Planetransverse DLW, have been examined. Using a numeri-
<6.5 mm 1) across all propagation directions and the rangecal algorithm calledBoX_TREE, the dispersion relation was
of k investigated. For example, fok=1.18, Keitical shown to be an opticlike inverse dispersion ket K iico) and
=5.5mm ! for #=30° andKgjca=6.2 mm 1 for #=0° a positive dispersion whek>K_icai- The negative group
(Fig. 4). On the other hand, fof=30°, Kgiica=4.6 mm 1 velocity of the wave whek <Kk, depends on the value
for k=1.62 andKcica=5.5 mm * for x=1.18 (Fig. 2). of the lattice and the positive group velocity fRP>Kgisical
Finally, a simulation was also run for a 1D string of par- depends on the propagation direction of the wave. The value
ticles having the same mass, charge, density, and Deby§ k at whichw starts to increaséiico» depends on botk
length as above. The system of particles was constrained toghd propagation direction, but changes very little for all
1D string by adding an external potential well on theli-  propagation directions and the rangeroinvestigated.
rection in theBOX_TREE code. As before, the dispersion re- A analytical method has also been used to derive the

lation for the out-of-planetransverse DLW was found and  gigpersion relations for theut-of-planetransverse DLW as-

then. cpmpgred with the analytical dispe_rsio_n _given bysuming a hexagonal 2D lattice and a Yukawa interparticle
Vladimirov in [10], where they show a solid fitFig. 5).

. . ; . N ; otential. These dispersion relations compare favorably with
Comparing the dispersion relation for the 1D string with thep P P y

o . . the simulation results.
2D lattice, it can be seen that the negative group velocity for Finally, the dispersion relation for a 1D string was ob-

K<Kerjcal Is much lower for the 1D string than itis for the .04 ia apoy tree simulation and shown to agree with
2D lattice given the same particle and environmental param; - 9

eters. Figure 5 shows that the negative group velocity of théhe analytical result given by Vladimirov ifi0] Cqmparl—
vertical DLW for a 1D string wherk<K..y and k=1 (a son shows that thut—of—planetra_nsverse DLW in a 2D
—0.57 mm) is— 8.536 mm/s. lattice whenk<<Kical has a negat!ve group velocity _much
All of the above is true even thougkyic for the 1D Iarg_er than that for the 1D string, given the same patrticle and
string equals 5.5 mmt, as can be seen in Fig. 5, which is in €nvironmental parameters, althoulglyca for both the 1D
the same range &s; ;.o for the 2D lattice investigated above Stfing and 2D lattice are in the same range (4.5mm

(4.5 mm 1 <kgiica<6.5 mmi 1), <Keriticar<< 6.5 mnm- 1)'- o '
The results predicted in this research should be experi-

mentally observable and could be used to determine the fun-
damental parameters of a complelisty) plasma such as the

In summary, the dispersion properties of a novel low-particle charge or Debye length. Corresponding experimental
frequency DLW mode in the 2D plasma crystal, that-of-  research is underway.

V. CONCLUSIONS
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